
General Assumptions
These are some general assumptions, the validity of which is required to generate a meaningful 

solution.

$Assumptions = {U > 0, ϵ > 0, NA > 0, R > 0, u0 > 0, β > 0};

Description of the problem
Let ϵ be the amount of energy of a single quantum, so that given an internal energy U, we can 

distribute U/ϵ quanta. Given that the system contains of N nodes, each oscillating in 3D, we have 

3N quantum harmonic oscillators. Thus

Ω =  

U

ϵ
+3N-1!


U

ϵ
! (3N-1)!

,

and

S = k ln Ω.

Solution
Number of quanta:

q =
U

ϵ
;

Let us do the calculations for 1 mole, so that the number of oscillators is:

Ν = 3 NA;

We will use Stirling’s formula in the following form:

LogFact[x_] := x Log[x] - x ;

So that:

s = FullSimplify[k ( LogFact[Ν + q] - LogFact[Ν] - LogFact[q])]
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Let us introduce molar quantitites:

U = NA u;

k = R / NA;

So that:

s = FullSimplify[s]
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Derive the thermal equation of state, rearrange to u:



u = u /. Solve
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Differentiate by T, to get the molar heat capacity:

cV = FullSimplify[D[u, T]]
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Introduce β = 2 RT
ϵ

 , so that:

ϵ =
2 R T

β
;

from which:

cV = FullSimplify[cV]
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We can already plot cV

R
 as a function of β:

Plot
cV

R
, {β, 0, 6}, PlotRange  All, AxesLabel  "β=

2 R T

ϵ
", "
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"
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Finally, some limits:

Limit[cV, β  0]

Limit[cV, β  ∞]
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