General Assumptions

These are some general assumptions, the validity of which is required to generate a meaningful
solution.

$Assumptions = {E>0, A>0,m>0,L>0, k>0, T>0,R>0, s >0};

Description of the problem

In quantum mechanics, we usually aim at solving Schrédinger’s equation:
Hy=Ew

where H is the Hamiltonian operator (assigned to energy), ¥ is the so-called wave function, and E
is the value of energy.

One convenient way of writing out H is to assume that
A=t
that is, a sum of kinetic (f') and potential energy (\7) operators.

While for most systems
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definition of the potential energy depends on the interactions within the system. In case of a particle
in a box, we usually assume that

V=0ifo<x<L (where L is the length of the box), otherwise V= co.

Solution of Schrodinger’s Equation

Let us first solve the 2" order ODE by specifying two boundary conditions:
solution[x_] = FullSimplify[@[x] /. ReplaceAll|

2
First@DSolve[-:—D[m[x], {x, 2}] = E€[x], €[x], x|, {C[1] - A, C[2] - B}]];
m

Print["Z(x) = ", solution[
x]1
T(x) - ACos[\/?XT '"E} +B$in[ﬁxT "'E}

Note that this is a family of functions, where A and B could, in principle, take any values. We are
only concerned with cases in which ¥{0) = ¥(L) =0. Thus let us solve the following set of equations:
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Reduce[ {
solution[@] == @,
solution[L] ==

}> {A, B}]

Fm[Zl%mE]:ewA:]l\“:GMSM[ZIEmE]iewB:)

From the above two conditions, only the first one is physically meaningful. Thus, A = 0 and we have
a constraint on the value of E:

A=0;
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E=E/.Solve[Tm==n7r, E][[l]]i
Print["E = ", E]

n? n® n?
T 212m

The value of B can be calculated by normalizing the squared wave function to 1:

B = B /. FullSimplify[Solve[Integrate[solution[x]?, {x, @, L}] =1, B],
Assumptions - {n € Integers}] [[2]1]1;
Print[
"B

ll, B]
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We can now do some test plotting:

B =

L=1;
h=1;
n=3;
Plot[solution[x], {x, ©, L}]
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Quit[];

Finding the fundamental equation

Let us start with the previously obtained energy expression:
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En =n

The probability of a given energy state to be filled is proportional to Exp [— E—H . Sum these up (that
is, integrate) to get the sum of probabilities for one molecule:

3
omol = ReplaceAll[(Integr‘ate[Exp[— f—:], {n, o, oo}]) s {12 v}

(MRT)32y
2+/2 NA3 3/2 53

The number of possible states for all molecules of 1 mole of the system is thus © = & @mo1", from

which:

smolar = k (NA Log[@mol] - NA Log[NA] + k NA) ;
smolar = R (Log[@mol] - Log[NA] +1)

R [1—Log[NA] + Log[ —MRT) 22y })
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Note that this is in fact the molar entropy. Rearrange this to express T as a function of the molar
entropy s:

T /. Solve[Smolar ==s, T][[1]]
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Integrate to get the molar internal energy u:

u = Integrate[%, s];

m=M/NA;
u = FullSimplify[u]
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Multiply by n to get the internal energy U, solve for s, switch to extensive variables:

s /. FullSimplify[Solve[U == nu, s], Assumptions » {C[1] ==0}][[1]];
FullSimplify[n ReplaceAll[%, {v->V/n}], Assumptions » {n > 0}]
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