
General Assumptions
These are some general assumptions, the validity of which is required to generate a meaningful 

solution.

$Assumptions = {Ε > 0, ℏ > 0, m > 0, L > 0, k > 0, T > 0, R > 0, s > 0};

Description of the problem
In quantum mechanics, we usually aim at solving Schrödinger’s equation:

H

Ψ = E Ψ,

where H  is the Hamiltonian operator (assigned to energy), Ψ  is the so-called wave function, and E 

is the value of energy.

One convenient way of writing out H  is to assume that

H
  = T + V ,

that is, a sum of kinetic (T) and potential energy (V) operators.

While for most systems 

T
 = – ℏ2

2 m
 ∂2

∂x2 ,

definition of the potential energy depends on the interactions within the system. In case of a particle 

in a box, we usually assume that

V
  = 0 if 0 < x < L (where L is the length of the box), otherwise V  = ∞.

Solution of Schrödinger’s Equation
Let us first solve the 2nd order ODE by specifying two boundary conditions:

solution[x_] = FullSimplifyΨ[x] /. ReplaceAll

First@DSolve-
ℏ2

2 m
D[Ψ[x], {x, 2}] ⩵ Ε Ψ[x], Ψ[x], x, {C[1] → A, C[2] → B};

Print["Ψ(x) = ", solution[

x]]

Ψ(x) = A Cos
2 x m Ε

ℏ
 + B Sin

2 x m Ε

ℏ


Note that this is a family of functions, where A and B could, in principle, take any values. We are 

only concerned with cases in which Ψ(0) = Ψ(L) =0. Thus let us solve the following set of equations:



Reduce[{

solution[0] ⩵ 0,

solution[L] ⩵ 0

}, {A, B}]

Sin 2 L m Ε

ℏ
 ⩵ 0 && A ⩵ 0 || A ⩵ 0 && Sin 2 L m Ε

ℏ
 ≠ 0 && B ⩵ 0

From the above two conditions, only the first one is physically meaningful. Thus, A = 0 and we have 

a constraint on the value of E:

A = 0;

Ε = Ε /. Solve
2 L m Ε

ℏ
⩵ n π, Ε[[1]];

Print["Ε = ", Ε]

Ε =
n2 π2 ℏ2

2 L2 m

The value of B can be calculated by normalizing the squared wave function to 1:

B = B /. FullSimplifySolveIntegratesolution[x]2, {x, 0, L} ⩵ 1, B,

Assumptions → {n ∈ Integers}[[2]];

Print[

"B

=

", B]

B =
2

L

We can now do some test plotting:

L = 1;

ℏ = 1;

n = 3;

Plot[solution[x], {x, 0, L}]
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Quit[];

Finding the fundamental equation
Let us start with the previously obtained energy expression:
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Εn =n2
π2 ℏ2

2 L2 m
;

The probability of a given energy state to be filled is proportional to Exp- Εn
k T

. Sum these up (that 

is, integrate) to get the sum of probabilities for one molecule:

Ωmol = ReplaceAllIntegrateExp-
Εn

k T
, {n, 0, ∞}

3

, L3 → v

(M R T)3/2 v

2 2 NA3 π3/2 ℏ3

The number of possible states for all molecules of 1 mole of the system is thus Ω = 1
ΝA!

ΩmolΝA, from 

which:

Smolar = k NA Log[Ωmol] - NA Log[NA] + k NA;

Smolar = R Log[Ωmol] - Log[NA] + 1

R 1 - Log[NA] + Log (M R T)3/2 v

2 2 NA3 π3/2 ℏ3


Note that this is in fact the molar entropy. Rearrange this to express T as a function of the molar 

entropy s:

T /. Solve[Smolar ⩵ s, T ][[1]]

2 ⅇ
- 2
3
+ 2 s
3 R NA8/3 π ℏ2

M R v2/3

Integrate to get the molar internal energy u:

u = Integrate[%, s];

k = R / NA;

m = M / NA;

u = FullSimplify[u]

3 ⅇ
2
3
-1+ s

R
 NA8/3 π ℏ2

M v2/3

Multiply by n to get the internal energy U, solve for s, switch to extensive variables:

s /. FullSimplify[Solve[U ⩵ n u, s], Assumptions → {C[1] ⩵ 0}][[1]];

FullSimplify[n ReplaceAll[%, {v → V / n }], Assumptions → {n > 0}]

n R -
3
2
R Log 3 n

5/3 NA8/3 π ℏ2

M U V2/3

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